(x^2-9)/(5+x^2)=-5/9

Simple and best practice solution for (x^2-9)/(5+x^2)=-5/9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2-9)/(5+x^2)=-5/9 equation:



(x^2-9)/(5+x^2)=-5/9
We move all terms to the left:
(x^2-9)/(5+x^2)-(-5/9)=0
Domain of the equation: (5+x^2)!=0
We move all terms containing x to the left, all other terms to the right
x^2!=-5
x^2!=-5/
x^2!=√-1/0
x!=NAN
x∈R
We get rid of parentheses
(x^2-9)/(5+x^2)+5/9=0
We calculate fractions
(9x^2-81)/(9x^2+45)+(5x^2+25)/(9x^2+45)=0
We multiply all the terms by the denominator
(9x^2-81)+(5x^2+25)=0
We get rid of parentheses
9x^2+5x^2-81+25=0
We add all the numbers together, and all the variables
14x^2-56=0
a = 14; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·14·(-56)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3136}=56$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-56}{2*14}=\frac{-56}{28} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+56}{2*14}=\frac{56}{28} =2 $

See similar equations:

| (x)/(2)+(x)/(3)-15=0 | | 38=6(v+5)-2v | | 1=7–2t | | -16 = g3– 19 | | 2u-8=32 | | 7x-9-3x=4(x+3)+1 | | Y=2×-13a5×=25 | | 18-1h+5h-11=9h+19-3h | | 1/3(6x–5)–x=1/3–2(x+1) | | w+2.4=5.56 | | k3+ 4= 6 | | 6x+12=8x+10 | | k+17=17 | | 10–2h=8 | | 7(-2+4)=x | | 97=5y+17 | | x-3.1=5.93 | | 3+2k=11 | | 4.6x+1=4.6x | | 3d+8=2d- | | 19-(-8)-(-14)=y | | 2a-70=64 | | a+8=-10 | | 3x+4x-6=50 | | 200/10=x/5 | | t-15/4=1 | | 4(a+2)=14-2(3-2a | | 51=2v+11 | | 6w+2=9w=14 | | p+10=-13 | | 5x+5=10x=2 | | 100/10=x/5 |

Equations solver categories